Emerging hypothesis verification using function-based geometric models and active vision strategies
نویسندگان
چکیده
Reproduced with the kind permissions of the copyright owner. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. Abstract This papex describes an investigation into the use of parametric 2D models describing the movement of edges for the determination of possible 3D shape and hence function of an object. An assumption of this reseaxch is that the camera can foveate and track particular features. It is argued that simple 2D analytic descriptions of the movement of edges can infer 3D shape while the camera is moved. This uses an advantage of foveation i.e. the problem becomes object centred. The problem of correspondence for numerous edge points is overcome by the use of a tree based representation for the competing hypotheses. Numerous hypothesis are maintained simultaneously and it does not rely on a single kinematic model which assumes constant velocity or acceleration. The numerous advantages of this strategy are described.
منابع مشابه
A New Method for Root Detection in Minirhizotron Images: Hypothesis Testing Based on Entropy-Based Geometric Level Set Decision
In this paper a new method is introduced for root detection in minirhizotron images for root investigation. In this method firstly a hypothesis testing framework is defined to separate roots from background and noise. Then the correct roots are extracted by using an entropy-based geometric level set decision function. Performance of the proposed method is evaluated on real captured images in tw...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملEvolutionary minimum verification error learning of the alternative hypothesis model for LLR-based speaker verification
It is usually difficult to characterize the alternative hypothesis precisely in a log-likelihood ratio (LLR)-based speaker verification system. In a previous work, we proposed using a weighted arithmetic combination (WAC) or a weighted geometric combination (WGC) of the likelihoods of the background models instead of heuristic combinations, such as the arithmetic mean and the geometric mean, to...
متن کاملA Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models
Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis. Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...
متن کامل